فصل چهارم – سنتز و بررسی ویژگی‌های نانوکامپوزیت سیلیکا آئروژل/نانوذرات فریت کبالت
۵۱
۶۳
لیست علایم و اختصارات
برونر، امت، تلر(Brunauer, Emmett, Teller) BET
پراش پرتو ایکس (X-Ray Diffraction) XRD
مغناطیس­سنج نمونه­ ارتعاشی (Vibrating Sample Magnetometer) VSM
میکروسکوپ الکترونی گسیل میدانی (Field Emission Scanning Electron Microscopy) FE-SEM
میکروسکوپ الکترونی عبوری (Transmission Electron Microscopy) TEM
آنگسترم (Angestrom) Å
اورستد (Oersted) Oe
نانومتر (Nanometer) nm
واحد مغناطیسی (Electromagnetic Units) emu
فصل اول
مفاهیم اولیه
مقدمه
از اواخر قرن بیستم دانشمندان تمرکز خود را بر فناوری نوینی معطوف کردند که به عقیده‌ی عده‌ای تحولی عظیم در زندگی بشر ایجاد می‌کند. این فناوری نوین که در رشته‌هایی همچون فیزیک، شیمی و مهندسی از اهمیت زیادی برخوردار است، نانوتکنولوژی نام دارد. می‌توان گفت که نانوفناوری رویکردی جدید در تمام علوم و رشته‌ها می‌باشد و این امکان را برای بشر به وجود آورده است تا با یک روش معین به مطالعه‌ی مواد در سطح اتمی و مولکولی و به سبک‌های مختلف به بازآرایی اتم‌ها و مولکول‌ها بپردازد.
(( اینجا فقط تکه ای از متن درج شده است. برای خرید متن کامل فایل پایان نامه با فرمت ورد می توانید به سایت nefo.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. ))

در چند سال اخیر، چه در فیزیک تجربی و چه در فیزیک نظری، توجه قابل ملاحظه‌ای به مطالعه‌ی نانوساختارها با ابعاد کم شده است و از این ساختارها نه تنها برای درک مفاهیم پایه‌ای فیزیک بلکه برای طراحی تجهیزات و وسایلی در ابعاد نانومتر استفاده شده­است. وقتی که ابعاد یک ماده از اندازه‌های بزرگ مانند متر و سانتی­متر به اندازه‌هایی در حدود یک دهم نانومتر یا کم­تر کاهش می‌یابد، اثرات کوانتومی را می‌توان دید و این اثرات به مقدار زیاد خواص ماده را تحت الشعاع قرار می‌دهد. خواصی نظیر رنگ، استحکام، مقاومت، خوردگی یا ویژگی‌های نوری، مغناطیسی و الکتریکی ماده از جمله‌ی این خواص‌ می‌باشند [۱].
۱-۱ شاخه‌های فناوری نانو
تفاوت اصلی فناوری نانو با فناوری‌های دیگر در مقیاس مواد و ساختارهایی است که در این فناوری مورد استفاده قرار می‌گیرند. در حقیقت اگر بخواهیم تفاوت این فناوری را با فناوری‌های دیگر بیان نماییم، می‌توانیم وجود عناصر پایه را به عنوان یک معیار ذکر کنیم. اولین و مهم­ترین عنصر پایه نانو ذره است. نانوذره یک ذره‌ی میکروسکوپی است که حداقل طول یک بعد آن کمتر از ١٠٠ نانومتر است و می­توانند از مواد مختلفی تشکیل شوند، مانند نانوذرات فلزی، سرامیکی و نانوبلورها که زیر مجموعه ­ای از نانوذرات هستند [ ۳و ۲]. دومین عنصر پایه نانوکپسول است که قطر آن در حد نانومتر می‌باشد. عنصر پایه‌ی بعدی نانولوله‌ها هستند که خواص الکتریکی مختلفی از خود نشان می‌دهند و شامل نانولوله‌های کربنی، نیترید بور و نانولوله‌های آلی می‌باشند [۴].
۱-۲ روش‌های ساخت نانوساختارها
تولید و بهینه­سازی مواد بسیار ریز، اساس بسیاری از تحقیقات و فناوری‌های امروزی است. دستورالعمل‌های مختلفی در خصوص تولید ذرات بسیار ریز در شرایط تعلیق[۱] وجود دارد ولی در خصوص انتشار و تشریح دقیق فرایند رسوب‌گیری و روش‌های افزایش مقیاس این فرآیندها در مقیاس تجاری محدودیت وجود دارد. برای تولید این نوع مواد بسیار ریز از پدیده‌های فیزیکی یا شیمیایی یا به طور همزمان از هر دو استفاده می‌شود. برای تولید یک ذره با اندازه مشخص دو فرایند اساسی وجود دارد، درهم شکستن) بالا به پایین) و دیگری ساخته شدن) پایین به بالا). معمولا روش‌های پائین به بالا ضایعاتی ندارند، هر چند الزاما این مسأله صادق نیست [۶ و۵]. مراحل مختلف تولید ذرات بسیار ریز عبارت است از، مرحله‌ی هسته‌زایی اولیه و مرحله‌ی هسته‌زایی[۲] و رشد خود به خودی[۳]. در ادامه به طور خلاصه روش‌های مختلف تولید نانوذرات را بیان می‌کنیم. به طور کلی روش‌های تولید نانوذرات عبارتند از:
× چگالش بخار
× سنتز شیمیایی
× فرآیندهای حالت جامد (خردایشی)
× استفاده از شاره‌ها فوق بحرانی به عنوان واسطه رشد نانوذرات فلزی
× استفاده از امواج ماکروویو و امواج مافوق صوت
× استفاده از باکتری‌هایی که می­توانند نانوذرات مغناطیسی و نقره‌ای تولید کنند
پس از تولید نانوذرات می‌توان با توجه به نوع کاربرد آن‌ها از روش‌های رایج زمینه‌ای مثل روکش­دهی یا اصلاح شیمیایی نیز استفاده کرد [۷].
۱-۳ کاربردهای نانوساختارها
یکی از خواص نانوذرات نسبت سطح به حجم بالای این مواد است. با بهره گرفتن از این خاصیت می‌توان کاتالیزورهای قدرتمندی در ابعاد نانومتری تولید نمود. این نانوکاتالیزورها بازده واکنش‌های شیمیایی را به شدت افزایش داده و همچنین به میزان چشم­گیری از تولید مواد زاید در واکنش‌ها جلوگیری خواهند نمود. به کارگیری نانو‌ذرات در تولید مواد دیگر استحکام آن‌ها را افزایش داده و یا وزن آن‌ها را کم می‌کند. همچنین مقاومت شیمیایی و حرارتی آن‌ها را بالا برده و واکنش آن‌ها در برابر نور وتشعشعات دیگر را تغییر می‌دهد.
با بهره گرفتن از نانوذرات نسبت استحکام به وزن مواد کامپوزیتی به شدت افزایش خواهد یافت. اخیرا در ساخت شیشه ضد آفتاب از نانوذرات اکسید روی استفاده شده است. استفاده از این ماده علاوه بر افزایش کارآیی این نوع شیشه­ها، عمر آن‌ها را نیز چندین برابر نموده ­است .از نانوذرات همچنین در ساخت انواع ساینده‌ها، رنگ‌ها، لایه‌های محافظتی جدید و بسیار مقاوم برای شیشه‌ها، عینک‌ها (ضدجوش و نشکن)، کاشی‌ها و در حفاظ‌های الکترومغناطیسی شیشه‌های اتومبیل و پنجره استفاده می‌شود. پوشش‌های ضد نوشته برای دیوارها و پوشش ­های سرامیکی برای افزایش استحکام سلول‌های خورشیدی نیز با بهره گرفتن از نانوذرات تولید شده‌اند.
وقتی اندازه ذرات به نانومتر می‌رسد یکی از ویژگی‌هایی که تحت تأثیر این کوچک شدن اندازه قرارمی‌گیرد تأثیرپذیری از نور و امواج الکترومغناطیسی است. با توجه به این موضوع اخیراً چسب‌هایی از نانوذرات تولید شده‌اند که کاربردهای مهمی در صنایع الکترونیکی دارند. نانولوله‌ها در موارد الکتریکی، مکانیکی و اپتیکی بسیار مورد توجه بوده‌اند. روش‌های تولید نانولوله‌ها نیز متفاوت می‌باشد، همانند تولید آن‌ها بر پایه محلول و فاز بخار یا روش رشد نانولوله‌ها در قالب که توسط مارتین[۴] مطرح شد. نانولایه‌ها در پوشش‌های حفاظتی با افزایش مقاومت در خوردگی و افزایش سختی در سطوح و فوتولیز و کاهش شیمیایی کاربرد دارند.
نانوذرات نیز به عنوان پیش­ماده یا اصلاح ساز در پدیده های فیزیکی و شیمیایی مورد توجه قرار گرفته‌اند. هاروتا[۵] و تامسون[۶] اثبات کردند که نانوذرات فعالیت کاتالیستی وسیعی دارند، مثل تبدیل مونواکسید کربن به دی اکسید کربن، هیدروژنه کردن استیرن به اتیل بنزن و هیدروژنه کردن ترکیبات اولفیتی در فشار بالا و فعالیت کاتالیستی نانوذرات مورد استفاده در حسگرها که مثل آنتن الکترونی بین الکترود و الکترولیت ارتباط برقرار می‌کنند [۷].
۱-۴ مواد نانومتخلخل
مواد نانو متخلخل دارای حفره‌هایی در ابعاد نانو هستند و حجم زیادی از ساختار آن‌ها را فضای خالی تشکیل می‌دهد. نسبت سطح به حجم (سطح ویژه) بسیار بالا، نفوذپذیری یا تراوایی[۷] زیاد، گزینش­پذیری خوب و مقاومت گرمایی و صوتی از ویژگی‌های مهم آن‌ها می‌باشد. با توجه به ویژگی‎‌های ساختاری، این به عنوان تبادل‌گر یونی[۸]، جدا کننده[۹]، کاتالیزور، حس‌گر، غشا[۱۰] و مواد عایق استفاده می‌شود.
نسبت حجمی فضای خالی ماده‌ی متخلخل به حجم کل ماده‌ تخلخل[۱۱] نامیده می­ شود. به موادی که تخلخل آن‌ها بین ۲/۰ تا ۹۵/۰ باشد نیز مواد متخلخل[۱۲] می‌گویند. حفره‌ای که متصل به سطح آزاد ماده است حفره‌ی باز[۱۳] نام دارد که برای صاف کردن غشا، جداسازی[۱۴] و کاربردهای شیمیایی مثل کاتالیزور و کروماتوگرافی[۱۵] (جداسازی مواد با بهره گرفتن از رنگ آن‌ها) مناسب است. به حفره‌ای که دور از سطح آزاد ماده است حفره‌ی بسته[۱۶] می‌گویند که وجود آن‌ها تنها سبب افزایش مقاومت گرمایی و صوتی و کاهش وزن ماده شده و در کاربردهای شیمیایی سهمی ندارد. حفره‌ها دارای اشکال گوناگونی همچون کروی، استوانه­ای، شیاری، قیفی شکل و یا آرایش شش گوش[۱۷] هستند. همچنین تخلخل‌ها می‌توانند صاف یا خمیده یا همراه با چرخش و پیچش باشند [۷].
بر اساس دسته­بندی که توسط آیوپاک[۱۸] صورت گرفته است، ساختار محیط متخلخل با توجه به میانگین ابعاد حفره‌ها، مواد سازنده و نظم ساختار به سه گروه تقسیم ­بندی می­شوند که در شکل ۱-۱ نشان داده شده است:
الف) دسته بندی بر اساس اندازه­ حفره:

    • میکرومتخلخل[۱۹]: دارای حفره­هایی با قطر کمتر از ۲ نانومتر.
    • مزومتخلخل[۲۰]: دارای حفره­هایی با قطر ۲ تا ۵۰ نانومتر.
    • ماکرومتخلخل:[۲۱] دارای حفره­هایی با قطر بیش از ۵۰ نانومتر.

شکل ۱-۱ انواع سیلیکا براساس اندازه حفره: الف) ماکرو متخلخل، ب) مزو متخلخل، ج) میکرو متخلخل [۸].
بر اساس شکل و موقعیت حفره‌ها نسبت به یکدیگر در داخل مواد متخلخل، حفره‌ها به چهار دسته تقسیم می‌شود: حفره‌های راه به راه[۲۲]، حفره‌های کور[۲۳]، حفره‌های بسته[۲۴] و حفره‌های متصل به هم[۲۵] که در شکل (۲-۱) به صورت شماتیک این حفره‌ها را نشان داده ­شده است.
شکل ۱-۲ نوع تخلخل‌ها بر اساس شکل و موقعیت [۸].
بر اساس تعریف مصطلح نانوفناوری، دانشمندان شیمی در عمل نانو متخلخل[۲۶] را برای موادی که دارای حفره­هایی با قطر کمتر از ۱۰۰ نانومتر هستند به کار می‌برند که ابعاد رایجی برای مواد متخلخل در کاربردهای شیمیایی است.
ب) دسته­بندی بر‌اساس مواد تشکیل دهنده:

  • مواد نانومتخلخل آلی
موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...