مقدار ۲ برای این آماره نشانگر عدم وجود خود همبستگی میباشد که حالت مطلوب در فرضیات اصلی مربوط به باقیمانده ها در تحلیل رگرسیون می باشد. اصلا مقدار کمتر از ۲ همبستگی پیاپی مثبت (نوعی همبستگی پیاپی می باشد که در آن مقدار باقیمانده مثبت برای یک مشاهده شانس مثبت بودن باقیمانده مشاهده دیگر را افزایش میدهد و بالعکس )و مقدار بیشتر از ۲ این آماره همبستگی پیاپی منفی را در بین باقیمانده نشان میدهد. لازم به ذکر است مقدار آماره آزمون اگر کمتر از ۱.۵ یا بیشتر از ۲٫۵ باشد زنگ هشدار برای وجود خود همبستگی مثبت یا منفی بین باقیمانده می باشد.

( اینجا فقط تکه ای از متن درج شده است. برای خرید متن کامل فایل پایان نامه با فرمت ورد می توانید به سایت feko.ir مراجعه نمایید و کلمه کلیدی مورد نظرتان را جستجو نمایید. )

فصل چهارم
تخمین و یافته­های پژوهش
۴-۱- مقدمه
در فصل چهارم به بررسی الگوهای ارائه شده و تفسیر نتایج پرداخته می­ شود. در این مطالعه مدل­های برآورد شده براساس داده ­های ترکیبی است، از این رو ابتدا بایستی از مانا بودن متغیرها از طریق آزمون­های مانایی مختص داده ­های تلفیقی اطمینان حاصل کرد. پس از حصول اطمینان از مانا بودن داده ­ها، مدل­ها برآورد و تفسیر می­شوند. در برآورد مدل­ها براساس رویکرد داده ­های تلفیقی ابتدا به منظور تعیین Pool یا Panel بودن مدل از آزمون F لیمر استفاده می­ شود و در مرحله بعد آزمون هاسمن به منظور تعیین روش اثرات ثابت و یا روش اثرات تصادفی انجام می­ شود و در نهایت به منظور بررسی رابطه بلندمدت بین متغیرهای مدل، از آزمون هم­جمعی کاو استفاده می­ شود.
۴-۲-آمار توصیفی
در تجزیه و تحلیل توصیفی[۵۷]، با بهره گرفتن از جداول و شاخص­ های آمار توصیفی نظیر شاخص­ های مرکزی[۵۸] و پراکندگی[۵۹] به توصیف داده ­های جمع­آوری شده پژوهش ­پرداخته می­ شود. این امر به شفافیت و توضیح داده ­های پژوهش کمک بسیاری می­ کند. نتایج حاصل از تجزیه و تحلیل توصیفی داده ­ها در جداول (۴-۱) و (۴-۲) ارائه شده است.
تعداد مشاهدات پژوهش حاضر ۵۶۰ سال- شرکت است. این مشاهدات حاصل از ترکیب داده‌های ۱۱۲ شرکت پذیرفته شده در بورس به­عنوان داده ­های مقطعی در طول ۶ سال(۱۳۸۷ تا ۱۳۹۲)، بعنوان دوره مورد مطالعه می­باشد.
اصلی­ترین شاخص مرکزی، میانگین است که نشان­دهنده نقطه تعادل و مرکز ثقل توزیع است. میانه نشان می­دهد که نیمی از داده ­ها کمتر از این مقدار و نیمی دیگر بیشتر از این مقدار هستند. به طور کلی پارامترهای پراکندگی، معیاری برای تعیین میزان پراکندگی داده ­ها از یکدیگر یا میزان پراکندگی آن­ها نسبت به میانگین است. از مهم­ترین پارامترهای پراکندگی، انحراف معیار است. میزان عدم تقارن منحنی فراوانی را چولگی می­نامند. اگر ضریب چولگی صفر باشد، جامعه کاملا متقارن است و چنانچه این ضریب مثبت باشد چولگی به راست و اگر ضریب منفی باشد چولگی به چپ دارد. ضریب کشیدگی میزان کشیدگی منحنی فراوانی را نسبت به منحنی نرمال استاندارد نشان می­دهد.اگر کشیدگی حدود سه باشد، یعنی منحنی فراوانی از لحاظ کشیدگی وضع متعادل و نرمالی دارد، اگر این مقدار بزرگتر از عدد ۳ باشد منحنی برجسته و اگر کمتر از عدد ۳ باشد منحنی پهن می­باشد. آماره جارک­برا و سطح احتمال مربوط به آن، نرمال یا غیرنرمال بودن توزیع داده ­ها را نشان ­می­دهد. چنانچه سطح احتمال مربوط به آماره جارک-­برا برای مشاهدات مربوط به یک متغیر، بیشتر از ۰۵/۰ یا به عبارتی (p-value>0.05) باشد، این نتیجه نشان دهنده نرمال بودن توزیع متغیر موردنظر می­باشد.
برای مثال با توجه به جدول (۴-۱)، متوسط تغییرات حسابهای دریافتنی شرکت­های نمونه برابر با ۰۹۴۷۹۳/۰ است. میانه برای این متغیر برابر با ۰۷۶۱۵۵/۰ شده است. کمترین و بیشترین میزان این متغیر نیز در کل بازه زمانی مورد مطالعه به ترتیب برابر با ۵۶۲۴/۰ و ۰۰۰۰/۰ می باشد. انحراف معیار که معیاری برای تعیین میزان پراکندگی داده­هاست، معادل ۰۷۴۳/۰ شده است. با توجه به ضریب کشیدگی (۹۴۴۳۴/۱۰)، منحنی برجسته­تر از توزیع نرمال و با توجه به ضریب چولگی (۳۱۸۸۱۹/۲)، منحنی چوله به راست می­باشد. آماره جارک­برا و سطح احتمال مربوط به آن نشان دهنده نرمال یا غیرنرمال بودن توزیع داده­هاست، که با توجه به نتایج حاصل از این آماره و سطح احتمال (prob<0.05) در جداول ذیل، تمامی متغیرهای مدل دارای توزیع غیرنرمال می­باشند، اما با توجه به قضیه حد مرکزی اگر یک نمونه تصادفی n تایی از یک جامعه غیرنرمال با میانگین و انحراف معیار انتخاب شود توزیع نمونه، تقریبا به صورت نرمال توزیع میل خواهد کرد. وقتی n بزرگ شود غیرنرمال به نرمال تبدیل می­ شود .به عبارتی در قضیه حد مرکزی هر گاه اندازه نمونه به قدر کافی بزرگ شود انتظار می­رود که تخمین­زننده دارای یک توزیع نرمال (البته به طور تقریبی) در نمونه گیری­های مکرر باشد. اهمیت قضیه حد مرکزی در این است که این احساس عمومی را که بسیاری از متغیرهای تصادفی در حالت طبیعی خود دارای توزیعی همانند توزیع نرمال است را قوت می­بخشد(درخشان، ۱۳۸۶). با توجه به اینکه در این تحقیق حجم نمونه ۱۱۲ شرکت و بیشتر از حداقل حجم نمونه موردنیاز برای برقراری قضیه حد مرکزی یعنی حداقل ۳۰ نمونه می­­باشد و از طرفی تعداد مشاهدات در این مطالعه تقریبا زیاد و ۵۶۰ مشاهده(سال- شرکت) برای هر متغیر می­باشد، بنابراین می­توان گفت که توزیع تمامی متغیرها به سمت توزیع نرمال میل می­ کنند.
جدول(۴-۱) تحلیل توصیفی متغیرهای مدل

متغیرهای مدل
متغیر
آمار توصیفی

تغییرات در موجودی کالا
DGS) )
(میلیون ریال)

تغییرات حسابهای پرداختنی
(DAP)
(میلیون ریال)

تغییرات حسابهای دریافتنی (DAR)
(میلیون ریال)

۳۰۵۳/۰

۰۸۱۱/۰

۰۹۴۲۹/۰

میانگین

۰۲۸۰/۰

۰۵۴۶/۰

۰۷۶۲/۰

میانه

۰۵۵۴/۴۳

۴۹۸۹/۰

۵۶۲۴/۰

حداکثر مقدار سری

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...